الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : علوم تجريبية/البكالوريا دورة: 2017

عناصر الإجابة

العلامة

المجموع	مجزأة	
الموضوع الأول		
		التمرين الأول: (04 نقاط)
		$\int x = -\lambda + 9$
01	01	$\left\{ y=\lambda ight. egin{aligned} eta & \lambda \in \mathbb{R} \ .ig(D) \end{aligned} ight.$ التمثیل الوسیطی للمستقیم (1)
		$egin{cases} y=\lambda & /\lambda\in\mathbb{R}.ig(D) \ z=-\lambda+4 \end{cases}$ التمثیل الوسیطي للمستقیم (1)
01	01	x-y+z-4=0 . (P) الذي يشمل A ويوازي (P') معادلة (P')
01	01	A'(6;3;1) في النقطة A' حيث $A'(6;3;1)$ في النقطة (A'
		(Δ) التمثيل الوسيطي للمستقيم الم (Δ)
01	01	$\begin{cases} x = 5t + 1 \\ y = 4t - 1 / t \in \mathbb{R} \\ z = -t + 2 \end{cases} (\Delta) = (AA') \{D) \cap (P') \cap (\Delta) = \{A'\} $
		$\begin{cases} y = 4t - 1 & / t \in \mathbb{R} \\ A \in (\Delta) \end{cases}$ ومنه
01	01	التمرين الثاني: (04 نقاط)
01	0.75	$0 < u_n < 1$ ، n عدد طبیعي أنّ: من أجل كل عدد طبیعي أنّ: من أجل كل عدد $(1-u_n)(u_n+2)$
01	0.75	$u_{n+1} - u_n = \frac{(1 - u_n)(u_n + 2)}{u_n + 4} > 0$ ب) بيان أنّ المتتالية (u_n) متزايدة تماما
		بما أن (u_n) متزايدة تماما ومحدودة من الأعلى فإنها متقاربة –
	0.50	$\frac{5}{2}$ أ) بيان أنّ: $v_{n+1} = \frac{5}{2}$ ومنه المتتالية v_n هندسية أساسها (2)
		2
01	0.25	$v_0 = 3$
	0.25	$v_n=3igg(rac{5}{2}igg)^n$: عبارة حدّها العام
	0.23	
01	0.00	$u_n=1-rac{3}{v_n+1}$ ، من أجل كل عدد طبيعي $v_n=1$
	0.50	$\lim_{n\to\infty}u_n=1$: استنتاج النهاية
		التمرين الثالث: (05 نقاط)
01	0.25	$\Delta = -16$ (I
01	0.75	. $S = \{-2; 2-2i; 2+2i\}$ حل المعادلة:
0.50	2×0.25	$z_{B}=2\sqrt{2}e^{irac{\pi}{4}}$ و الشكل الأسّي: $z_{A}=2\sqrt{2}e^{-irac{\pi}{4}}$ و $z_{A}=2\sqrt{2}e^{-irac{\pi}{4}}$
01	01	$z_{D} = 6 + 8i $ (2
	0.25	(Γ) التحقّق أنّ مبدأ المعلم O هو نقطة من (Γ)

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : علوم تجريبية/البكالوريا دورة: 2017

المجموعة النقط M من المستوى حيث M موراة النقط M من المستوى حيث M موراة النقط M من المستوى حيث M من المستوى المستوى حيث M من المستوعة التي حداها M و قطرها M و تشمل M ذات M المجموعة M من نصف الدائرة المفتوحة التي حداها النقطتين M و M ذات M ذات M في: M من نصف الدائرة المفتوحة التي حداها النقطتين M و M ذات M ذات M نصف M نصف M نصف M نصف M نصف M نصف M ذات M نصف M			الإنجابة التمودجية عوضوع احتبار مادة : الرياضيات /الشعبة : علوم جريبية/البكالوريا دورة: 17.
المجموعة النقط الدائرة المفتوحة التي حداها A و قطوها A و المغتوحة التي حداها A و قطوها A و قطوها A و المغتوحة التي عداها A و قطوها المغتوحة التي عداها A و قطوها وقطوها A و قطوها وقطوها وقطوها وقطوها وقطوها وقطوها وق	العلامة		عناصر الإجابة
$(MA; MB) = \frac{1}{2} + 2\pi k \ / k \in \mathbb{Z}$ من محموعة النقط M من المستوية التي حداها A و وقطرها A و وتشمل A و المجارة المركبة للتحاكي A المجارة المركبة للتحاكي A هي: (Γ) وتشمل A و A المجارة المركبة للتحاكي A هي: $(2z + 2z +$	المجموع	مجزأة	
1.25 O مي نصف الدائرة المفتوحة التي حداها A و B و وقطرها A و A وتشمل A (Γ) هي نصف الدائرة المفتوحة التي حداها النقطنين A		0.25	$(\overrightarrow{MA};\overrightarrow{MB})=rac{\pi}{2}+2\pi k$ $/$ $k\in\mathbb{Z}$ من المستوي حيث M من المستوي حيث Γ
العبارة المركبة للتحاكي A العبارة المركبة للتحاكي A العبارة المركبة للتحاكي A العبارة المؤتجة التي حداها النقطتين B' و A' والتي تشمل B' ذات A' المجموعة A' المجموعة A' المجموعة التي حداها النقطتين A' و A' و A' و A' المختاب A' المحتاث A		0.50	2
(C_f) المجموعة (C_f) هي نصف الدائرة المفتوحة التي حداها النقطتين (C_f) هي نصف الدائرة المفتوحة التي حداها النقطتين (C_f) هي نصف الدائرة المفتوحة التي حداها النقطتين (C_f) هي نصف الدائرة المفتوحة التي حداها النقطين (C_f) هي نصف الدائرة المفتوحة التي حداها النقطين (C_f) هي نصف الدائرة المفتوحة التي حداها النقطين الرابع: (C_f) هي نصف الدائرة المفتوحة التي حداها النقطين المباغة نصف الدائرة المفتوحة التي حداها النقطين المفتوحة التي حداها النقطين المفتوحة التي حداها النقطين المفتوحة التي حداها المفتوحة التي حداها المفتوحة التي حداها النقطين المفتوحة التي المفتوحة التي حداها النقطين المفتوحة التي حداها المفتوحة التي المفتوحة التي حداها المفتوحة التي حداها المفتوحة التي المفتوحة التي المفتوحة التي حداها المفتوحة التي المفتوحة المفتوحة التي المفتوحة التي المفتوحة المفتوحة المفتوحة المفتوحة المفتوحة التي المفتوحة الم	1.25	0.25	
0.25 المجموعة (Γ') هي نصف الدائرة المفتوحة التي حداها النقطتين A' و A' والتي تشمل A' ذات $C_{A'} = 6 - 4i$ و $C_{A'} = 6 - 4i$ اللاحقة $C_{A'} = 6 - 4i$ و		0.50	z'=2z+2 العدارة المركبة للتحاكي h هي (4
$z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ اللاحقة $z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ المرين الرابع: $z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ المرين الرابع: $z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ المرين الرابع: $z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ المرين الرابع: $z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ المرين الرابع: $z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ المرين الرابع: $z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ المرين الرابع: $z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ المرين الرابع: $z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ المرين الرابع: $z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ المرين الرابع: $z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ المرين الرابع: $z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ المرين الرابع: $z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ المرين الرابع: $z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ المرين المرين الرابع: $z_{A'} = 6 - 4i \; ; \; z_{B'} = 6 + 4i$ المرين الم	1.25		
0.75 0.50 قريبين أنّ الدالة f فردية f فردية f 0.25 التفسير البياني: المبدأ O مركز تناظر للمنحني O أيم مركز تناظر المنحني O مركز O مركز O النهاية المبدأ O مركز O النهايات السابقة نستنج أن O يقبل مستقيمين مقاربين موازيين لحامل محور التراتيب معادلتيهما O O يقبل مستقيمين مقاربين موازيين لحامل محور التراتيب معادلتيهما O		0.50	$z_{A^{\prime}}=6-4i\;;\;\;z_{B^{\prime}}=6+4i$ اللاحقة 2
(C_f) مرکز تناظر للمنحني (C_f) مرکز تناظر للمنحني O مرکز المبدأ O مرکز مرکز مرکز O مرکز O التقسير O مرکز O مرکز O التقسير O مرکز O التقسير O مرکز O التقسير O مرکز O التقسير O التقسير O التقسير O التقسير O التقسير المبدأ O التقسير O التقسير O التقسير المبدأ O التقسير O التقسير المبدأ O التقسير O التقسير O التقسير O التقسير المبدأ O التقسير المبدأ O التقسير ألم التقسير O التقسير O ال			التمرين الرابع: (07 نقاط)
التفسير البياني: المبدأ O مرکز تناظر للمنحني C مرکز تناظر المنحني O مرکز تناظر المنحني O مرکز تناظر المنحني O مرکز O التفسير O مرکز O التفسير O مرکز O التفسير O التفايات السابقة نستنتج أن O يقبل مستقيمين مقاربين موازيين لحامل محور التراتيب معادلتيهما O عبد O يقبل مستقيمين مقاربين موازيين لحامل محور التراتيب معادلتيهما O عبد O يقبل مستقيمين مقاربين الحامل محور التراتيب معادلتيهما O عبد O التفايات السابقة نستنتج أن O يقبل مستقيمين مقاربين موازيين لحامل محور O التواتيب معادلتيهما O التفايات السابقة نستنتج أن O يقبل مستقيمين مقاربين موازيين الحامل محور O التواتيب معادلتيهما O التفايات السابقة نستنتج أن O يقبل مستقيمين مقاربين موازيين الحامل محور O التواتيب معادلتيهما O التواتيب معادلتيه التواتيب معادلتيه O التواتيب معادلتيه O التواتيب معادلتي O التواتيب معادلتي O التواتيب معادلتيه التواتيب معادلتيه التواتيب معادلتي O التواتيب معادلتي O التواتيب معادلتي O التواتيب معادلتي O التواتيب معادلتيب معا	0.75	0.50	بيان أنّ الدالة f فردية (1
1.50 $\lim_{x \to -\infty} f(x) = -\infty , \lim_{x \to +\infty} f(x) = +\infty$ $\lim_{x \to \infty} f(x) = -\infty , \lim_{x \to +\infty} f(x) = +\infty$ at limit $f(x) = -\infty$ in $f(x) = -\infty$	0.75	0.25	$\left(C_{_f} ight)$ التفسير البياني: المبدأ O مركز تناظر للمنحني
$\lim_{x \to -\infty} f(x) = -\infty$ ، $\lim_{x \to +\infty} f(x) = +\infty$ من النهایات السابقة نستنتج أن (C_f) یقبل مستقیمین مقاربین موازیین لحامل محور التراتیب معادلتیهما $x = -1$; $x = 1$		0.25×4	$\lim_{x \to -1} f(x) = +\infty \lim_{x \to -1} f(x) = -\infty (2)$
من النهایات السابقة نستنتج أن $\left(C_f ight)$ یقبل مستقیمین مقاربین موازبین لحامل محور التراتیب معادلتیهما $x=-1\; ;\; x=1$	1.50		$\lim_{x \to -\infty} f(x) = -\infty \lim_{x \to +\infty} f(x) = +\infty$
		2×0.25	من النهايات السابقة نستنتج أن $\left(C_f ight)$ يقبل مستقيمين مقاربين موازيين لحامل محور التراتيب معادلتيهما
$.f'(x) = \frac{2}{3} \left(\frac{x^2 + 2}{x^2 - 1} \right)$ ، a من a من b من أجل كل a من b من أجل كل a من أحد أن أم من أجل كل a من أحد أن أم			x = -1; $x = 1$
		0.50	. $f'(x) = \frac{2}{3} \left(\frac{x^2 + 2}{x^2 - 1} \right)$ ، من x من أجل كل x من أجل كل x من (3)

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : علوم تجريبية/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	
1.25	0.25	D ب) اتجاه تغیّر الدالة $f:f$ متزایدة تماما علی کل مجال من
	0.50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.75	0.75	. $1,8: حيث f\left(x ight)=0 تقبل حلا وحيدا f\left(x ight)=0 بيان أن المعادلة$
01	0.50	$\lim_{ x \to+\infty} \left[f(x) - \frac{2}{3}x \right] = \lim_{ x \to+\infty} \ln\left(\frac{x-1}{x+1}\right) = 0 : \Delta $ مقارب مائل لأن
	0.50	$x>1$ الوضع النسبي: (Δ) الحق (Δ) من الجل (Δ) من الجل الحق النسبي: الحق الفرا الحق الحق الحق الحق الحق الحق الحق الح
0.75	0.75	$\cdot \left(C_f ight)$ انشاء المستقيم $\left(\Delta ight)$ والمنحنى $\left(\Delta ight)$
	0.25	$f(x) = m x$ تكافئ $(2-3 m)x + 3\ln\left(\frac{x-1}{x+1}\right) = 0$ (7
01	0.25 2×0.25	$y= m x$ حلول المعادلة هي فواصل نقط تقاطع $\binom{C_f}{0}$ مع المستقيم ذو المعادلة هي فواصل نقط تقاطع $m\in \left]-\infty;-rac{2}{3} ight]$ إذا كان $\left[rac{2}{3};+\infty ight[$ فان المعادلة لا تقبل حلول $m\in \left[rac{2}{3};+\infty ight]$
		إذا كان $m\in \left[-rac{2}{3};rac{2}{3} ight]$ فان المعادلة تقبل حلين متمايزين

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : علوم تجريبية/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	
الموضوع الثاني		
		التمرين الأول: (04 نقاط)

		الموضـــوع الثاني
		التمرين الأول: (04 نقاط)
	0.50	بيان أنّ النقط B ، A بيان أنّ النقط B ، و C تعيّن مستويا
1.25		(ABC) للتحقّق أنّ: $2x+3y+6z-6=0$ معادلة للمستوي
	0.75	يكفي التأكد ان إحداثيات النقط A ، B و C تحقق المعادلة المعطاة
	0.50	x = 2t
0.50		$\left\{ egin{aligned} y = 3t & / \ t \in \mathbb{R} \end{aligned} ight.$ التمثيل الوسيطي للمستقيم (Δ) التمثيل الوسيطي المستقيم (2
		z = 6t
01	01	$H\left(\frac{12}{49}; \frac{18}{49}; \frac{36}{49}\right): H$ إحداثيات H
1.25	0.50	$\overrightarrow{AC}\cdot\overrightarrow{BH}=0$: اثبات أن (4
1.25	0.75	$\overrightarrow{ ext{CH}}\cdot\overrightarrow{AB}=0$ او $\overrightarrow{AH}\cdot\overrightarrow{BC}=0$ نقطة تلاقي الاعمدة: يكفي اثبات
		التمرين الثاني: (04 نقاط)
0.75	0.25	igl[-4;1igr] التحقق أنّ الدالة f متزايدة تماما على المجال التحقق أنّ الدالة المتزايدة المجال المجال
0.73	0.50	$f\left(x ight)$ فإن $x\in\left[-4;1\right]$ فإن $x\in\left[-4;1\right]$ اثبات ان: من أجل كل
01	0.50	(II)
	2×0.25	تمتیل الحدود u_1 ، u_0 و u_2 ، u_1 ، u_0 المحدود u_3 u_3 . u_3 . u_3 . u_4 . u_4 . u_5 . u_6 . u_7 . u_8 . u_9 . $u_$
	0.75	$-4 < u_n \leq 0$ ، n البرهان بالتراجع أن: من أجل كل عدد طبيعي (2
1.25	0.50	$u_{n+1} - u_n = -rac{(u_n+1)^2}{u_n+1} < 0$ بيان أنّ المتتالية (u_n) متناقصة تماما
	0.50	$v_{n+1} = v_n + \frac{1}{7}$: شبات أنّ (v_n) حسابية (3
01	0.50	S = -1161792:حساب المجموع

الصفحة 4 من 6

3as.ency-education.com

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : علوم تجريبية/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	
		التمرين الثالث: (05 نقاط)
01	0.25 0.75	مجموعة حلول المعادلة $S=\left\{-rac{1}{2}+i ight\}$ في المجموعة $\mathbb C$ هي $\left(rac{z+1-i}{z-i} ight)^2=1$ (صحيحة)
01	0.25 0.75	من أجل كل عدد مركب z ، z $ z+2 = z+2 ^2$ ، من أجل كل عدد مركب z ، من أجل كل عدد مركب z ، من أجل كل عدد مركب z
01	0.25	(خاطئة) $ \cdot \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{3n} = 1 \cdot n $ من أجل كل عدد طبيعي (3)
	0.75	صورة الدائرة (C') ذات المركز $\omega(0;1)$ ونصف القطر 3 بالتشابه S هي الدائرة (C') ذات المركز (4
01	0.75	وتصف القطر (\mathcal{C}) وتصف القطر (\mathcal{C}) وتصف القطر (\mathcal{C}) وتصف القطر 9 وتصف القطر 9 $\omega'(-2;-3)$
	0.25	من أجل كل عدد حقيقي $lpha:$ إذا كان (5
01	0.75	(صحيحة) $\operatorname{arg}(Z) = \frac{\pi}{2} - 2\alpha + 2k\pi$ غإن $Z = (\sin \alpha + i\cos \alpha) \times (\cos \alpha - i\sin \alpha)$
		التمرين الرابع: (07 نقاط)
	0.50	$\lim_{x \to +\infty} f(x) = 2$ بیان اُنَ (1
01	0.25	$y\!=\!2$ التفسير هندسي (C_f) يقبل مستقيما مقاربا يوازي حامل محور الفواصل معادلته
	0.25	$\lim_{x \to \infty} f(x) = -\infty$: حساب النهاية
	0.50	$f'(x)=x(x-2)e^{1-x}$ ، $\mathbb R$ من x من أجل كل x من أبد
	0.50	$[2;+\infty[$ ب $]-\infty;0$ و $[0;+\infty[$ و f متزایدة تماما علی $[0;2]$ و متناقصة تماما علی $[0;2]$
		جدول التغيرات:
1.50		
	0.50	$ \begin{array}{c ccccc} x & -\infty & 0 & 2 & +\infty \\ f'(x) & + & 0 & - & 0 & + \\ \hline f(x) & & & & +\infty \\ \hline f(x) & & & & & +\infty \end{array} $
0.50	0.50	(T): y = -x + 2 معادلة المماس (3)

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : علوم تجريبية/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	
	0.50	$.h(x){\ge}0$: تبیان أن من أجل كل x من \mathbb{R} فإن (1)
1.25	0.25	$egin{array}{c cccc} x & -\infty & 1 & +\infty \\ h'(x) & - & 0 & + \\ \hline h(x) & & & & & & & & & & & & & & & & & & &$
	0.50	$f(x)-y=xh(x)$ $]-\infty;0$ مُوق $[T)$ على $[T]$ 1;+ $[T]$ 1;+ $[T]$ 2 على $[T]$ 3 على $[T]$ 4 على $[T]$ 5 على $[T]$ 5 على $[T]$ 6 على $[T]$ 6 على $[T]$ 6 على $[T]$ 6 على $[T]$ 7 يقطع $[T]$ 8 على $[T]$ 8 على $[T]$ 9 يقطع $[T]$ 9 يقطع $[T]$ 9 على النقطتين الن
0.75	0.75	. $-0,7 < lpha < -0,6$ بيان أنّ المعادلة $f(x)=0$ تقبل حلاً وحيدا $lpha$ حيث (1) بيان أنّ المعادلة القيم المتوسطة ورتابة الدالة
01	0.25	(C_f) انشاء المماس (T) والمنحنى (C_f) على المجال (C_f) انشاء المماس (C_f)
01	0.50	$F'(x)=f(x): \ \mathbb{R}$ على F دالة أصلية للدالة f على F على $S=\int\limits_0^1 f(x)dx=F(1)-F(0)=(7-2e)$ $u.a$ حساب المساحة $S=\int\limits_0^1 f(x)dx=F(1)$